
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/224176324

Two Efficient Algorithms for Linear Time Suffix Array Construction

Article in IEEE Transactions on Computers · November 2011

DOI: 10.1109/TC.2010.188 · Source: IEEE Xplore

CITATIONS

146
READS

3,401

3 authors, including:

Sen Zhang

State University of New York College at Oneonta

23 PUBLICATIONS 635 CITATIONS

SEE PROFILE

Daricks Wai Hong Chan

The Education University of Hong Kong

61 PUBLICATIONS 1,282 CITATIONS

SEE PROFILE

All content following this page was uploaded by Daricks Wai Hong Chan on 06 March 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/224176324_Two_Efficient_Algorithms_for_Linear_Time_Suffix_Array_Construction?enrichId=rgreq-16ef222338def65bf0adb2e34fcc7c7f-XXX&enrichSource=Y292ZXJQYWdlOzIyNDE3NjMyNDtBUzo5ODY4MTU1ODY2NzI3OEAxNDAwNTM4OTI1ODA1&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/224176324_Two_Efficient_Algorithms_for_Linear_Time_Suffix_Array_Construction?enrichId=rgreq-16ef222338def65bf0adb2e34fcc7c7f-XXX&enrichSource=Y292ZXJQYWdlOzIyNDE3NjMyNDtBUzo5ODY4MTU1ODY2NzI3OEAxNDAwNTM4OTI1ODA1&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-16ef222338def65bf0adb2e34fcc7c7f-XXX&enrichSource=Y292ZXJQYWdlOzIyNDE3NjMyNDtBUzo5ODY4MTU1ODY2NzI3OEAxNDAwNTM4OTI1ODA1&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sen-Zhang-45?enrichId=rgreq-16ef222338def65bf0adb2e34fcc7c7f-XXX&enrichSource=Y292ZXJQYWdlOzIyNDE3NjMyNDtBUzo5ODY4MTU1ODY2NzI3OEAxNDAwNTM4OTI1ODA1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sen-Zhang-45?enrichId=rgreq-16ef222338def65bf0adb2e34fcc7c7f-XXX&enrichSource=Y292ZXJQYWdlOzIyNDE3NjMyNDtBUzo5ODY4MTU1ODY2NzI3OEAxNDAwNTM4OTI1ODA1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/State-University-of-New-York-College-at-Oneonta?enrichId=rgreq-16ef222338def65bf0adb2e34fcc7c7f-XXX&enrichSource=Y292ZXJQYWdlOzIyNDE3NjMyNDtBUzo5ODY4MTU1ODY2NzI3OEAxNDAwNTM4OTI1ODA1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sen-Zhang-45?enrichId=rgreq-16ef222338def65bf0adb2e34fcc7c7f-XXX&enrichSource=Y292ZXJQYWdlOzIyNDE3NjMyNDtBUzo5ODY4MTU1ODY2NzI3OEAxNDAwNTM4OTI1ODA1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daricks-Wai-Hong-Chan?enrichId=rgreq-16ef222338def65bf0adb2e34fcc7c7f-XXX&enrichSource=Y292ZXJQYWdlOzIyNDE3NjMyNDtBUzo5ODY4MTU1ODY2NzI3OEAxNDAwNTM4OTI1ODA1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daricks-Wai-Hong-Chan?enrichId=rgreq-16ef222338def65bf0adb2e34fcc7c7f-XXX&enrichSource=Y292ZXJQYWdlOzIyNDE3NjMyNDtBUzo5ODY4MTU1ODY2NzI3OEAxNDAwNTM4OTI1ODA1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The-Education-University-of-Hong-Kong?enrichId=rgreq-16ef222338def65bf0adb2e34fcc7c7f-XXX&enrichSource=Y292ZXJQYWdlOzIyNDE3NjMyNDtBUzo5ODY4MTU1ODY2NzI3OEAxNDAwNTM4OTI1ODA1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daricks-Wai-Hong-Chan?enrichId=rgreq-16ef222338def65bf0adb2e34fcc7c7f-XXX&enrichSource=Y292ZXJQYWdlOzIyNDE3NjMyNDtBUzo5ODY4MTU1ODY2NzI3OEAxNDAwNTM4OTI1ODA1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daricks-Wai-Hong-Chan?enrichId=rgreq-16ef222338def65bf0adb2e34fcc7c7f-XXX&enrichSource=Y292ZXJQYWdlOzIyNDE3NjMyNDtBUzo5ODY4MTU1ODY2NzI3OEAxNDAwNTM4OTI1ODA1&el=1_x_10&_esc=publicationCoverPdf

TWO EFFICIENT ALGORITHMS FOR LINEAR TIME SUFFIX ARRAY CONSTRUCTION 1

Two Efficient Algorithms for Linear Time Suffix
Array Construction

Ge Nong, Sen Zhang, and Wai Hong Chan

Abstract—We present in this paper two efficient algorithms for linear time suffix array construction. These two algorithms archive their
linear time complexities using the techniques of divide-and-conquer and recursion. What distinguish the proposed algorithms from other
linear time suffix array construction algorithms (SACAs) are the variable-length leftmost S-type (LMS) substrings and the fixed-length
d-critical substrings sampled for problem reduction, and the simple algorithms for sorting these sampled substrings: the induced sorting
algorithm for the variable-length LMS substrings and the radix sorting algorithm for the fixed-length d-critical substrings. The very simple
sorting mechanisms render our algorithms an elegant design framework and in turn the surprisingly succinct implementations. The fully
functional sample implementations of our proposed algorithms require only around 100 lines of C code for each, which is only 1/10 of
the implementation of the KA [1] algorithm and comparable to that of the KS [2] algorithm. The experimental results demonstrate that
these two newly proposed algorithms yield the best time and space efficiencies among all the existing linear time SACAs.

Index Terms—Suffix array, linear time, divide-and-conquer.

F

1 INTRODUCTION

The concept of suffix arrays was introduced by Manber
and Myers in SODA’90 [3] and SICOMP’93 [4] as a space
efficient alternative to suffix trees, and since then has
been well-recognized as a fundamental data structure
useful for a broad spectrum of applications, e.g. data
indexing, retrieving, storing and processing. For an n-
character string, denoted by S, its suffix array, denoted
by SA(S), is an array of indices pointing to all the
suffixes of S sorted according to their ascending(or
descending) lexicographical order. The suffix array of S
itself requires only n⌈logn⌉-bit space. However, different
suffix array construction algorithms (SACAs) may re-
quire significantly different space and time complexities.
During the past decade, a plethora of researches have
been devoted to developing SACAs that are both time
and space efficient, for which we recommend a thorough
survey from Puglisi [5]. Very recently, the research on
time and space efficient SACAs has become an even hot-
ter pursuit, due to that constructions of suffix arrays are
needed for large-scale applications, e.g. web searching
and biological genome database, where the magnitude of
a huge dataset is measured often in billions of characters
[6], [7], [8], [9], [10]. Time and space efficient linear time
algorithms are crucial for large-scale applications to have

• G. Nong is with the Department of Computer Science, Sun Yat-sen
University, Guangzhou 510275, P.R.C., E-mail: issng@mail.sysu.edu.cn.
He was supported by the National Science Foundation of P.R.C. (Grant
No. 60873056).

• S. Zhang is with the Department of Mathematics, Computer Science
and Statistics, SUNY College at Oneonta, NY 07104, U.S.A., E-mail:
zhangs@oneonta.edu.

• W. H. Chan is with the Department of Mathematics, Hong Kong Bap-
tist University (HKBU), Hong Kong, E-mail: dchan@hkbu.edu.hk. He
was partly supported by the Faculty Research Grant (FRG/07-08/II-30),
HKBU.

predicable worst-case performance. Our interest herein
is limited to linear time suffix array construction only.

Prior-Arts
The three well-known linear time SACAs up to date are
the KS [11], [2], KA [12], [1] and KSP [13] algorithms,
all contemporarily reported in 2003. All of them are
of linear time for an input string of either constant or
integer alphabets, where a constant alphabet is of size
O(1) and an integer alphabet consists of the characters
in [0, nO(1)]. Among them, the KSP algorithm appears to
mimic Farach’s work [14] on suffix trees in using a very
similar and complex merging step, thus it does not gain
popularity in practice.

The KS algorithm consists of three straightforward
steps [11], [2]:

1) A size-n string S (represented by an array indexed
by [0..n − 1]) is reduced to S1 by naming each
size-3 substring S[i..i + 2] for i mod 3 ̸= 0 as an
integer of size ⌈log n⌉ bits, which can be done in
O(n) time by simply running 3 passes radix sort on
all the sampled fixed-size substrings. As a result,
we split the original problem of size n, i.e. S, to
a reduced problem of size 2n/3, i.e. S1, and the
remaining problem of size n/3. Then, the suffix
array of S1 is constructed by further reductions
using 2/3-recursion repeatedly.

2) Construct the suffix array of the remaining problem
in O(n) time using induction from the suffix array
of S1.

3) Merge the two suffix arrays by a simple
comparison-based algorithm in O(n) time to
produce the final result.

The KS algorithm requires a linear time given by
T (n) = T (⌈2n/3⌉) +O(n) = O(n), and an extra working

TWO EFFICIENT ALGORITHMS FOR LINEAR TIME SUFFIX ARRAY CONSTRUCTION 2

space of at least n integers where each integer is of
⌈log2 n⌉ bits. Herein, we define working space as the extra
space needed in addition to the input string and the
output suffix array (which are universally needed for
any SACA published so far).

The key idea of the KA algorithm lies in classifying all
the suffixes in the string S into two classes for problem
reduction: L-type and S-type, which, to some degree, is
a variant of the type-A/B suffix classification method
formerly proposed by Itoh and Tanaka [15]. The L/S-
type suffix classification can be done in O(n) time by
simply scanning S from right to left. A character S[i] is
said to be L-type and S-type if the suffix S[i..n − 1] is
L-type and S-type, respectively. Based on the classified
suffixes of L-type and S-type, a S-substring is defined as
any substring S[i..j], j > i, satisfying that S[i] and S[j]
are the only two S-type characters in S[i..j]. Similarly,
a L-substring S[i..j], j > i, satisfies that S[i] and S[j]
are the only two L-type characters in S[i..j]. Since the
definitions of L-type and S-type substrings (see 3.2 for
the precise definitions) are symmetric, it is safe to assume
that there are fewer S-substrings; otherwise, L-substrings
will be used instead. Given this assumption, the KA
algorithm is composed of the following 3 steps [12], [1]:

1) By naming all the S-substrings in S in O(n) time,
the original problem S is split into a reduced
problem S1 of size at most n/2 and a remaining
problem of size at least n/2, where the reduced and
remaining problems consist of all the S-type and L-
type suffixes in S, respectively. The suffix array of
S1 is constructed by further reductions using 1/2-
recursion repeatedly.

2) Construct in O(n) time the suffix array of the
remaining problem, i.e. the suffix array of all the L-
type suffixes in S, using induction from the suffix
array of S1.

3) Merge the two suffix arrays for S1 and the remain-
ing problem, i.e. the SAs for all the S-type and
L-type suffixes of S, respectively, in O(n) time to
produce the final result.

The merging step in the KA algorithm is very simple,
benefited from this fact observed in [12], [1] for any
string. That is, for any two suffixes of L-type and S-type,
respectively, if their beginning characters are identical,
the L-type suffix must be smaller than the S-type one.
Hence, merging the two suffix arrays for the reduced and
remaining problems can be done by scanning them once
with simple character and type comparisons. The KA
algorithm has a linear time given by T (n) = T (⌈n/2⌉)+
O(n) = O(n), and a working space of 3n bytes plus 1.25n
bits for a string not longer than 232 [12].

Due to the space limit, we refer readers who are new
to suffix arrays to [5] for more related backgrounds.

Remarks
Both the KS and KA algorithms share a similar divide-
and-conquer framework, which comprises linear-time

problem reduction, recursion, remaining problem induc-
tion, and merging. To be more specific, the framework
works as following. 1) First the input string is reduced
into a smaller string, so that the original problem is di-
vided into a reduced part and a remaining part. 2) Then
the suffix array of the reduced problem is recursively
computed. 3) Based on the result of the previous step,
the suffix array of the remaining problem is induced.
4) Finally the two suffix arrays are merged as the final
result. In order to reduce the problem in step 1, the
selected substrings, either the triplets in the KS algorithm
or the S- or L-substrings in the KA algorithm, need to be
sorted and re-named by their order indices. This step is
commonly known as substring naming. In step 2, if the
suffix array of the reduced problem is not immediately
obtainable, a recursive call is further triggered to solve
the reduced problem.

The two algorithms differ from each other in how
to select substrings for reducing the problem. The KS
algorithm selects the fixed-length substrings that are
separated by the fixed intervals; thus the problem size is
reduced at each iteration in a constant reduction ratio of
2/3. In the meanwhile, the KA algorithm selects the S- or
L-substrings, which have varying lengths subject to the
specific characteristics of a given string. The reduction
ratio of the KA algorithm is always not more than
1/2 due to the symmetric definitions of L- and S-type
suffixes. Herein, reduction ratio is defined as the size
of the new child problem against that of its parent.
Due to the better reduction ratio (1/2 vs. 2/3), the KA
algorithm is expected to run faster than the KS algorithm
and use less space, which has been confirmed by the
performance evaluation studies independently carried
out by Puglisi [16] and Lee [17].

It appears that the KA algorithm is faster in problem
reduction; however, the sampled S-substrings (or sym-
metrically, L-substrings) may have different and unpre-
dictable lengths, which makes the design of algorithm
for problem reduction in the KA algorithm far more
complicated than that in the KS algorithm where the
fixed length substrings are sampled and sorted. For
accomplishing this task, Ko and Aluru [12], [1] proposed
to use the S-distance lists where each list contains all the
suffixes with the same S-distance, and the S-distance for
a suffix S[i..n−1] is the distance from S[i] to the nearest
S-type character to its left (excluding S[i]). However,
maintaining the S-distance lists demands not only extra
space but also additional time. Moreover, the S-distance
lists complicate the whole algorithm’s design, which is
well-evidenced by the sample implementations of the
KS and KA algorithms: the former is embodied within
only around 100 lines in C; whereas the latter uses far
more than 1000 lines. In this sense, the KS algorithm is
much more elegant than the KA algorithm. Therefore,
how to name the variable-length S-substrings has been
identified as the performance and design bottleneck in
the KA algorithm.

TWO EFFICIENT ALGORITHMS FOR LINEAR TIME SUFFIX ARRAY CONSTRUCTION 3

What Is New

Recently, we proposed in DCC’09 [18] and CPM’09 [19]
two new linear time SACAs that sample the variable-
length leftmost S-type (LMS) substrings (Definition 3.2)
and fixed-length d-critical substrings (Definition 4.3),
and use the very simple induced sorting and radix
sorting methods to sort the sampled substrings, respec-
tively. Since the LMS and d-critical substrings are statis-
tically longer than the L- or S-substrings, our algorithms
achieve an even better mean reduction ratio, and thus
run faster, than the KA algorithm.

For our algorithm sampling the fixed-length d-critical
substrings, sorting the sample substrings can be done
using a very simple radix sorting algorithm, for their
lengths are identical. For our another algorithm sam-
pling variable-length LMS substrings, we don’t need to
use any heavy data structure like S-distance lists in the
KA algorithm, but simply employ a new induced-sorting
method to address the bottleneck problem of sorting the
variable-length LMS substrings.

In the rest of this article, Section 2 first introduces
some basic notations for presenting our two algorithms.
Further, these two new algorithms are presented and
analyzed in Section 3 and 4, respectively, followed by an
extensive performance evaluation in Section 5. Finally,
Section 6 concludes our results.

2 BASIC NOTATIONS

We introduce in this section some basic notations com-
monly used in the presentations of our two algorithms.

Let S be a string of n characters stored in an array
[0..n−1], and Σ(S) be the alphabet of S. For a substring
S[i]S[i + 1]...S[j] in S, we denote it as S[i..j]. For pre-
sentation simplicity, S is supposed to be terminated by a
sentinel $, which is the unique lexicographically smallest
character in S (using a sentinel is widely adopted in the
literatures for SACAs [5]).

Let suf(S, i) be the suffix in S starting at S[i] and
running to the sentinel. A suffix suf(S, i) is said to be S-
type or L-type if suf(S, i) < suf(S, i+ 1) or suf(S, i) >
suf(S, i + 1), respectively. The last suffix suf(S, n − 1)
consisting of only the single character $ (the sentinel)
is defined as S-type. Correspondingly, we can classify
a character S[i] to be S-type or L-type if suf(S, i) is S-
type or L-type, respectively. To store the type of every
character/suffix, we introduce an n-bit boolean array t,
where t[i] records the type of character S[i] as well as
suffix suf(S, i): 1 for S-type and 0 for L-type. From the
S-type and L-type definitions, we observe the following
properties: (i) S[i] is S-type if (i.1) S[i] < S[i+ 1] or (i.2)
S[i] = S[i+ 1] and suf(S, i+ 1) is S-type; and (ii) S[i] is
L-type if (ii.1) S[i] > S[i+ 1] or (ii.2) S[i] = S[i+ 1] and
suf(S, i+ 1) is L-type. These properties suggest that by
scanning S once from right to left, we can determine the
type of each character/suffix in O(1) time and fill out
the type array t in O(n) time.

SA-IS(S, SA)

� S is the input string;
� SA is the output suffix array of S;
t: array [0..n− 1] of boolean;
P1, S1: array [0..n1 − 1] of integer; � n1 = ∥S1∥
B: array [0..∥Σ(S)∥ − 1] of integer;

1 Scan S once to classify all the characters as
L- or S-type into t;

2 Scan t once to find all the LMS-substrings in S into P1;
3 Induced sort all the LMS-substrings using P1 and B;
4 Name each LMS-substring in S by its bucket

index to get a new shortened string S1;
5 if Each character in S1 is unique
6 then
7 Directly compute SA1 from S1;
8 else
9 SA-IS(S1, SA1); � Fire a recursive call

10 Induce SA from SA1;
11 return

Fig. 1. The SA-IS algorithm framework.

As defined before, SA(S) (the notation of SA is used
for it when there is no confusion in the context), i.e. the
suffix array of S, stores the indices of all the suffixes
of S according to their lexicographical order. Trivially,
we can see that in SA, the pointers for all the suffixes
starting with a same character must span consecutively.
Let’s call a sub-array in SA for all the suffixes with the
same first character as a bucket, where the head and the
end of a bucket refer to the first and the last items of
the bucket, respectively. Further, there must be no tie
between any two suffixes sharing the identical character
but of different types. That is, in the same bucket, all
the suffixes of the same type are clustered together, and
the S-type suffixes are behind, i.e. to the right of, the L-
type suffixes [12], [1]. Hence, each bucket can be further
split into two sub-buckets with respect to the types of
suffixes inside: the L- and S-type buckets, where the L-
type bucket is on the left of the S-type bucket.

Before going further, we would remind readers that
the exact definitions of the two common symbols P1

and S1 for presenting our two algorithms are different
in their respective contexts.

3 ALGORITHM I: INDUCED SORTING
VARIABLE-LENGTH LMS-SUBSTRINGS

3.1 Algorithm Framework

The framework of our linear time suffix array sorting
algorithm SA-IS that samples and sorts the variable-
length LMS-substrings is outlined in Fig. 1. Lines 1-4
first produce the reduced problem, which is then solved
recursively by Lines 5-9, and finally from the solution of
the reduced problem, Line 10 induces the final solution
for the original problem. The time and space bottleneck
of this algorithm resides at reducing the problem in
Lines 1-4. In the rest of this section, we further describe
each step in more details.

TWO EFFICIENT ALGORITHMS FOR LINEAR TIME SUFFIX ARRAY CONSTRUCTION 4

3.2 Reducing the Problem

We start by introducing the terms of leftmost S-type
(LMS) character, suffix and substring as following.

Definition 3.1: (LMS Character/Suffix) A character
S[i], i ∈ [1, n − 1], is called LMS if S[i] is S-type and
S[i− 1] is L-type. A suffix suf(S, i) is called LMS if S[i]
is a LMS character.

Definition 3.2: (LMS-Substring) A LMS-substring is (i)
a substring S[i..j] with both S[i] and S[j] being LMS
characters, and there is no other LMS character in the
substring, for i ̸= j; or (ii) the sentinel itself.

Intuitively, if we treat the LMS-substrings as basic
blocks of the string, and if we can efficiently sort all
the LMS-substrings, then we can use the order index
of each LMS-substring as its name, and replace all the
LMS-substrings in S by their names. As a result, S can
be represented by a shorter string, denoted by S1, thus
the problem size can be reduced to facilitate solving the
problem in a manner of divide-and-conquer. Now, we
define the order for any two LMS-substrings.

Definition 3.3: (Substring Order) To determine the or-
der of any two LMS-substrings, we compare their cor-
responding characters from left to right: for each pair
of characters, we compare their lexicographical values
first, and next their types if the two characters are of the
same lexicographical value, where the S-type is of higher
priority than the L-type.

From this order definition for LMS-substring, we see
that two LMS-substrings can be of the same order index,
i.e. the same name, if and only if they are equal in
terms of lengths, characters and types. Assigning the S-
type character a higher priority is based on a property
directly from the definitions of L-type and S-type suffixes
in [12]: suf(S, i) > suf(S, j) if (1) S[i] > S[j] or (2)
S[i] = S[j], suf(S, i) and suf(S, j) are S-type and L-type,
respectively.

To sort all the LMS-substrings, no extra physical space
is needed for storing them. Instead, we simply maintain
a pointer array, denoted by P1, which contains the
pointers for all the LMS-substrings in S and can be made
by scanning S (or t) once from right to left in O(n) time.

Definition 3.4: (Sample Pointer Array) P1 is an array
containing the pointers for all the LMS-substrings in S
with their original positional order being preserved.

Suppose we have all the LMS-substrings sorted in the
buckets in their lexicographical order where all the LMS-
substrings in a bucket are identical, then we name each
item of P1 by the index of its bucket to produce a new
string S1. Here, we say two equal-size substrings S[i..j]
and S[i′..j′] are identical if and only if S[i+k] = S[i′+k]
and t[i + k] = t[i′ + k], for k ∈ [0, j − i]. We have the
following observation on S1.

Lemma 3.5: (1/2 Reduction Ratio) ∥S1∥ is at most half
of ∥S∥, i.e. n1 ≤ ⌊n/2⌋.

Proof: The 1st character in S must not be LMS while
the last must be LMS. Moreover, there are at least 3
characters in each non-sentinel LMS-substring, and any

two neighboring LMS-substrings overlap on a common
character.

Lemma 3.6: (Sentinel) The last character of S1 must be
the unique smallest character in S1.

Proof: From Defintion 3.2, we know that the single-
character LMS-substring, i.e. the sentinel, must be the
unique smallest among all the sampled LMS-substrings
in P1.

The above two lemmas state that, the size of S1 is at
most half of that of S, and S1 is terminated by an unique
smallest sentinel too.

Lemma 3.7: (Coverage) For any two characters S1[i] =
S1[j], there must be P1[i+ 1]− P1[i] = P1[j + 1]− P1[j].

Proof: Given S1[i] = S1[j], from the definition of S1,
there must be (1) S[P1[i]..P1[i + 1]] = S[P1[j]..P1[j + 1]]
and (2) t[P1[i]..P1[i + 1]] = t[P1[j]..P1[j + 1]]. Hence, the
two LMS-substrings in S starting at S[P1[i]] and S[P1[j]]
must have the same length.

Lemma 3.8: (Order Preservation) The relative order of
any two suffixes suf(S1, i) and suf(S1, j) in S1 is the
same as that of suf(S, P1[i]) and suf(S, P1[j]) in S.

Proof: The proof is due to the following considera-
tion for the following two cases:

• Case 1: S1[i] ̸= S1[j]. There must be a pair of
characters in the two substrings of either different
lexicographical values or different types. Given the
former, it is obvious that the statement is correct.
For the latter, because we assume the S-type is of
higher priority (see Definition 3.3), the statement is
also correct.

• Case 2: S1[i] = S1[j]. In this case, the order of
suf(S1, i) and suf(S1, j) is determined by the order
of suf(S1, i+ 1) and suf(S1, j + 1). The same argu-
ment can be recursively conducted on S1[i + 1] =
S1[j + 1], S1[i + 2] = S1[j + 2],...S1[i + k − 1] =
S1[j + k− 1] until S1[i+ k] ̸= S1[j + k]. Because that
S1[i..i+k−1] = S1[j..j+k−1], from Lemma 3.7, we
must have P1[i+k]−P1[i] = P1[j+k]−P1[j], i.e., the
substrings S[P1[i]..P1[i + k]] and S[P1[j]..P1[j + k]]
are of the same length. This suggests that sort-
ing S1[i..i + k] and S1[j..j + k] is equal to sorting
S[P1[i]..P1[i+ k]] and S[P1[j]..P1[j + k]]. Hence, the
statement is correct in this case, too.

This lemma suggests that in order to sort all the LMS-
suffixes in S, we can sort S1 instead. Because S1 is at least
1/2 shorter than S, the computation on S1 can be done
with less than one half the complexity for S. Let SA and
SA1 be the suffix arrays for S and S1, respectively, and
let us assume SA1 has been solved. Now, we proceed to
show how to induce SA from SA1 in linear time.

3.3 Inducing SA from SA1

We describe below our algorithm for inducing SA from
SA1 in linear time.

A3.3 Alg. for Inducing SA from SA1 in SA-IS

TWO EFFICIENT ALGORITHMS FOR LINEAR TIME SUFFIX ARRAY CONSTRUCTION 5

1) Initialize each item of SA as -1. Find the end of
each bucket in SA for all the suffixes in S. Scan
SA1 once from right to left, put P1[SA1[i]] to the
current end of the bucket for suf(S, P1[SA1[i]]) in
SA and forward the bucket’s end one item to the
left.

2) Find the head of each bucket in SA for all the
suffixes in S. Scan SA from left to right, for each
non-negative item SA[i], if S[SA[i]−1] is L-type, then
put SA[i]− 1 to the current head of the bucket for
suf(S, SA[i] − 1) and forward that bucket’s head
one item to the right.

3) Find the end of each bucket in SA for all the
suffixes in S. Scan SA from right to left, for each
non-negative item SA[i], if S[SA[i]−1] is S-type, then
put SA[i] − 1 to the current end of the bucket for
suf(S, SA[i]−1) and forward that bucket’s end one
item to the left.

Obviously, each of the above steps can be done in
linear time O(n). We now consider the correctness of
this inducing algorithm by investigating each of the
three steps in their reversed order. First the correctness
of step 3, which is about how to sort all the suffixes
from the sorted L-type suffixes by induction, is endorsed
by Lemma 3 established in [12] for supporting the KA
algorithm, cited as below.

Lemma 3.9: [12] Given all the L-type (or S-type) suf-
fixes of S sorted, all the suffixes of S can be sorted in
O(n) time.

In our context, Lemma 3.9 can be translated into the
statement below.

Lemma 3.10: Given all the L-type suffixes of S sorted,
all the suffixes of S can be sorted by step 3 in O(n) time.

From the above lemma, we have the following result
to support the correctness of step 2.

Lemma 3.11: Given all the LMS suffixes of S sorted, all
the L-type suffixes of S can be sorted by step 2 in O(n)
time.

Proof: From Lemma 3.9, we know that given all the
S-type suffixes having been sorted in SA, we can sort all
the (S-type and L-type) suffixes by traversing SA once
from left to right in O(n) time through induction. Notice
that not every S-type suffix is useful for induced sorting
the L-type suffixes; instead a S-type suffix is useful only
when it is also a LMS suffix. In order words, the correct
order of all the LMS suffixes suffices to induce the order
of all the L-type suffixes in O(n) time.

3.4 Induced Sorting LMS-Substrings
This part is dedicated to addressing the most challenging
problem in the whole design of algorithm SA-IS: how
to efficiently sort all the variable-size LMS-substrings.
In the KA algorithm, sorting the variable-size S- or L-
substrings constitutes the bottleneck of the whole algo-
rithm and solving it demands the usage of S-distance
lists. Nevertheless, our solution does not need to use
the cumbersome S-distance lists. Instead, we solve this

once difficult problem by using the same induced sorting
idea originally used in the algorithm A3.3 in Section 3.3.
Specifically, we only need to make a single change to
the 1st step of A3.3 in order to efficiently sort all the
variable-length LMS-substrings, as shown below.

A3.4 Alg. for Induced Sorting LMS-Substrings
1) Initialize each item of SA as -1. Find the end of each

bucket in SA for all the suffixes in S. Put the indices
of all the LMS-suffixes in S into their buckets in
SA, from the end to the head in each bucket. This is
done by scanning S once from left to right (or right
to left) and performing the following operations in
O(1) time for each scanned LMS suffix: put the
suffix’s index to the current end of its bucket in
SA and forward that bucket’s end one item to the
left.

2) The same as step 2 in the algorithm A3.3.
3) The same as step 3 in the algorithm A3.3.
To facilitate the following discussion, let us define a

LMS-prefix pre(S, i) of suf(S, i) to be (1) the sentinel
itself when i = n− 1; or (2) the prefix S[i..k] in suf(S, i)
where i ̸= n−1, k > i and S[k] is the first LMS character
after S[i]. Similarly, we define a LMS-prefix pre(S, i)
to be S-type or L-type if suf(S, i) is S-type or L-type,
respectively. We further to establish the following result
for sorting all the LMS-prefixes.

Theorem 3.12: The algorithm A3.4 for induced sorting
LMS-substrings will correctly sort all the LMS-prefixes
of S into SA.

Proof: Initially, in the 1st step, all the LMS suffixes are
put into their buckets in SA. Now, there is only one LMS-
prefix in SA, i.e. the sentinel, which is sorted correctly.

We next prove, by induction, the 2nd step will sort all
the L-type LMS-prefixes. When we append the first L-
type LMS-prefix to its bucket, it must be sorted correctly
with all the existing S-type LMS-prefixes already in SA.
Suppose this step has correctly sorted k L-type LMS-
prefixes, where k > 1. We show by contradiction that the
next L-type LMS-prefix will be sorted correctly. Suppose
that when we append the (k + 1)th L-type LMS-prefix
pre(S, i) to the current head of its bucket, there is already
another greater L-type LMS-prefix pre(S, j) in front of
(i.e. on the left hand side of) pre(S, i). In this case, we
must have S[i] = S[j], pre(S, j + 1) > pre(S, i + 1) and
pre(S, j+1) is in front of pre(S, i+1) in SA. This implies
that when we scanned SA from left to right, before
appending pre(S, i) to its bucket, we must have seen
the LMS-prefixes in SA being not sorted correctly. This
contradicts our assumption. As a result, all the L-type
LMS-prefixes and the sentinel are sorted in their correct
order by this step.

Now we prove that the 3rd step will further sort all
the LMS-prefixes. This step is being conducted similar to
what we have done in the 2nd step. When we append
the first S-type LMS-prefix to its bucket, it must be
sorted correctly with all the existing L-type LMS-prefixes
already in SA. Notice that in the first step, all the LMS
suffixes were put into of their buckets from the ends to

TWO EFFICIENT ALGORITHMS FOR LINEAR TIME SUFFIX ARRAY CONSTRUCTION 6

the heads. Hence, in this step, when we append a S-
type LMS-prefix to the current end of its S-type bucket,
it will overwrite the LMS suffix already there, if there is
any. Suppose this step has correctly sorted k S-type LMS-
prefixes, for k > 1. We show by contradiction that the
next S-type LMS-prefix will be sorted correctly. Suppose
that when we append the (k + 1)th S-type LMS-prefix
pre(S, i) to the current end of its bucket, there is already
another smaller S-type LMS-prefix pre(S, j) behind (i.e.
on the right hand side of) pre(S, i). In this case, we
must have S[i] = S[j], pre(S, j + 1) < pre(S, i + 1) and
pre(S, j + 1) is behind pre(S, i + 1) in SA. This implies
that when we scanned SA from right to left, before
appending pre(S, i) to its bucket, we must have seen
the LMS-prefixes in SA being not sorted correctly. This
contradicts our assumption. As a result, all the LMS-
prefixes are sorted in their correct order by this step.

From this theorem, we can immediately derive the
following two results. (1) Every LMS-substring is also
a LMS-prefix, given all the LMS-prefixes are ordered,
all the LMS-substrings are ordered too. (2) Every S-
substring is a prefix of a LMS-prefix, given all the LMS-
prefixes are ordered, all the S-substrings are ordered
too. Hence, our algorithm for induced sorting LMS-
substrings can be used for sorting all the LMS-substrings
in our SA-IS algorithm in Fig. 3, as well as for sorting
the S- or L-substrings in the KA algorithm.

3.5 Example

We provide below a running example of the algorithm
A3.4 for induced sorting and naming all the LMS-
substrings of a sample string S = mmiissiissiippii$,
where $ is the sentinel. First, we scan S from right to
left to produce the type array t at line 3, and all the
LMS-suffixes in S are marked by ‘∗’ under t. Then, we
continue to run the algorithm step by step:

• Step 1: The LMS-suffixes are 2, 6, 10 and 16. There
are 5 buckets for all the suffixes marked by their first
characters, i.e. $, i, m, p and s, respectively. Each
bucket is delimited by a pair of braces, as shown in
lines 6 and 7. We initialize SA by setting all its items
to be -1 and then scan S from left to right to put the
indices of all the LMS-suffixes into their buckets.
In this step, we record the end of each bucket, and
the LMS-suffixes are put into the bucket from the
end to the head. Hence, in the bucket for ‘i’, we
put the suffixes first 2, next 6 and last 10. Now,
the sentinel, which is the only single-character LMS-
prefix, is sorted to its correct position 0 in SA.

• Step 2: All the L-type LMS-prefixes are induced
sorted in this step. We first find the head of each
bucket. The current head of a bucket is marked by
the symbol ‘∧’ under the bucket. Now, we scan SA
from left to right, for which the current item of SA
being visited is marked by the symbol ‘@’. When
we are visiting SA[0] = 16 in line 10, we check the

type array t to know S[15] = i is L-type. Hence, 15
is appended to the current head of bucket for ‘i’,
and the bucket’s head is forwarded one step to the
right. In line 15, the scanning reaches SA[2] = 14
and see that S[13] = p is L-type, then we put 13
to the current head of bucket for ‘p’, and forward
the bucket’s head one step to the right. To repeat
scanning SA in this way, we can get all the L-type
LMS-prefixes and the sentinel sorted in SA as shown
in line 28, where a symbol ‘∧’ between two buckets
means that the left bucket is fully filled by L-type
LMS-prefixes.

• Step 3: In this step, we induced sort all the LMS-
prefixes from the sorted L-type prefixes. We first
mark the end of each bucket and then scan SA from
right to left. At SA[16] = 4, we see S[3] = i is S-
type, then put 3 to the current end of bucket for ‘i’
and forward the bucket’s end one step to the left.
When we visit the next character, i.e. S[15] = 8, we
see S[7] = i is S-type, then we put 7 to the current
end of bucket for ‘i’ and forward the bucket’s end
one step to the left. Notice that the LMS-prefixes
3 and 7 overwrote the LMS-suffixes 2 and 6 that
were formerly stored in the bucket by the 1st step,
respectively. To repeat scanning SA in this way, all
the LMS-prefixes are sorted in their order shown
in line 44. (Notice that the sentinel was put into its
bucket in the 1st step, and will not be overwritten by
any character in this step, for it is the last character
in the string.)

• Given all the LMS-prefixes are sorted in SA, we scan
SA once from left to right to compute the name for
each LMS-substring starting from 0, where the order
of any two neighboring LMS-substrings in SA is
determined by comparing the lexicographical values
and types of their characters one by one using
Definition 3.3. As a result, we get the shortened
string S1 shown in line 46, where the names for
the LMS-substrings 2, 6, 10 and 16 are 2, 2, 1, 0,
respectively.

00 0 1
01 Index: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
02 S: m m i i s s i i s s i i p p i i $
03 t: L L S S L L S S L L S S L L L L S
04 LMS: * * * *

05 Step 1:
06 Bucket: $ i m p s
07 SA: {16} {-1 -1 -1 -1 -1 10 06 02} {-1 -1} {-1 -1} {-1 -1 -1 -1}

08 Step 2:
09 Bucket: $ i m p s
10 SA: {16} {-1 -1 -1 -1 -1 10 06 02} {-1 -1} {-1 -1} {-1 -1 -1 -1}
11 @ˆ ˆ ˆ ˆ ˆ
12 {16} {15 -1 -1 -1 -1 10 06 02} {-1 -1} {-1 -1} {-1 -1 -1 -1}
13 ˆ @ ˆ ˆ ˆ ˆ
14 {16} {15 14 -1 -1 -1 10 06 02} {-1 -1} {13 -1} {-1 -1 -1 -1}
15 ˆ @ ˆ ˆ ˆ ˆ
16 {16} {15 14 -1 -1 -1 10 06 02} {-1 -1} {13 -1} {09 -1 -1 -1}
17 ˆ ˆ @ ˆ ˆ ˆ
18 {16} {15 14 -1 -1 -1 10 06 02} {-1 -1} {13 -1} {09 05 -1 -1}
19 ˆ ˆ @ ˆ ˆ ˆ
20 {16} {15 14 -1 -1 -1 10 06 02} {01 -1} {13 -1} {09 05 -1 -1}
21 ˆ ˆ @ ˆ ˆ ˆ
22 {16} {15 14 -1 -1 -1 10 06 02} {01 00} {13 -1} {09 05 -1 -1}
23 ˆ ˆ @ ˆ ˆ ˆ
24 {16} {15 14 -1 -1 -1 10 06 02} {01 00} {13 12} {09 05 -1 -1}
25 ˆ ˆ ˆ @ ˆ ˆ
26 {16} {15 14 -1 -1 -1 10 06 02} {01 00} {13 12} {09 05 08 -1}
27 ˆ ˆ ˆ ˆ @ ˆ
28 {16} {15 14 -1 -1 -1 10 06 02} {01 00} {13 12} {09 05 08 04}
29 ˆ ˆ ˆ ˆ @ ˆ

30 Step 3:
31 Bucket: $ i m p s

TWO EFFICIENT ALGORITHMS FOR LINEAR TIME SUFFIX ARRAY CONSTRUCTION 7

32 SA: {16} {15 14 -1 -1 -1 10 06 02} {01 00} {13 12} {09 05 08 04}
33 ˆ ˆ ˆ ˆ @ˆ
34 {16} {15 14 -1 -1 -1 10 06 03} {01 00} {13 12} {09 05 08 04}
35 ˆ ˆ ˆ ˆ @ ˆ
36 {16} {15 14 -1 -1 -1 10 07 03} {01 00} {13 12} {09 05 08 04}
37 ˆ ˆ ˆ @ˆ ˆ
38 {16} {15 14 -1 -1 -1 11 07 03} {01 00} {13 12} {09 05 08 04}
39 ˆ ˆ @ ˆ ˆ ˆ
40 {16} {15 14 -1 -1 02 11 07 03} {01 00} {13 12} {09 05 08 04}
41 ˆ ˆ @ ˆ ˆ ˆ
42 {16} {15 14 -1 06 02 11 07 03} {01 00} {13 12} {09 05 08 04}
43 ˆ ˆ ˆ ˆ ˆ
44 {16} {15 14 10 06 02 11 07 03} {01 00} {13 12} {09 05 08 04}
45 ˆ ˆ @ ˆ ˆ ˆ

46 S1: 2 2 1 0

3.6 Complexity Analysis for SA-IS
Theorem 3.13: (Time/Space Complexities) Given S is

of a constant or integer alphabet, the time and space
complexities for the algorithm SA-IS in Fig. 3 to compute
SA(S) are O(n) and O(n logn) bits, respectively.

Proof: Because the problem is reduced at least 1/2 at
each recursion, we have the time complexity governed
by the equation below, where the reduced problem is of
size at most ⌊n/2⌋. The first O(n) in the equation counts
for reducing the problem and inducing the final solution
from the reduced problem.

T (n) = T (⌊n/2⌋) +O(n) = O(n)

The space complexity is dominated by the space
needed to store the suffix array for the reduced problem
at each iteration. Because the size of suffix array at the
first iteration is upper bounded by n⌈log n⌉ bits, and
decreases at least a half for each iteration thereafter, the
space complexity is obvious O(n log n) bits.

SA1

S1 S2 SA2 B2

S1 B1

Level 2

SA0 B0Level 0

Level 1

Fig. 2. The worst-case space requirement for the SA-IS
algorithm at each recursion level.

To investigate the accurate space requirement, we
show in Fig. 2 a space allocation scheme, where the
worst-case space consumption at each level is propor-
tional to the total length of bars at this level, and the bars
for different levels are arranged vertically. In this figure,
we have not shown the spaces for the input string S and
the type array t—the former is fixed for a given S and
the later varies from level to level. Let Si and ti denote
the string and the type array at level i, respectively. If we
keep ti throughout the lifetime of Si, i.e., ti is freed only
when we return to the upper level i−1. we need at most
2n bits for all the type arrays in the worst-case. However,
we can also free ti when we are going to the level i+1,
and restore ti from Si when we return from the level
i + 1. In this way, we need at most n bits to be reused
for all the type arrays. Because the space consumed by
the type arrays is negligible when compared with SA, it
is omitted in the figure.

The space at each level consists of two components:
SAi for the suffix array of Si, and Bi the bucket array
at level i, respectively. In the worst case, each array
requires a space as large as Si (when the alphabet of
Si is integer). For S with an integer alphabet, the peak
space is observed at the top level. However, if the
alphabet of S is constant, B0 and B1 are O(1) and O(n),
respectively, resulting in the maximum space required by
the 2nd level when n increases. Hence, we have the space
requirement as following, where n bits in both cases are
counted for the type arrays.

Corollary 3.14: The worst-case working space require-
ments for SA-IS in Fig. 3 to compute the suffix array of S
are: (1) 0.5n log n+n+O(1) bits, for the alphabet of S is
constant; and (2) n log n+n+O(1) bits, for the alphabet
of S is integer.

For the space requirement of the algorithm in practice,
we have the below a probabilistic result.

Theorem 3.15: Given the probabilities for each charac-
ter to be S-type or L-type are i.i.d as 1/2, the mean size
of a non-sentinel LMS-substring is 4, i.e, the reduction
ratio is not greater than 1/3.

Proof: Let us consider a non-sentinel LMS substring
S[i..j], where i < j. From the definition of LMS-
substring, we know that this substring must contain two
LMS characters: one is the head and another is the end.
Moreover, there must be at least one L-type character
S[k] in between S[i] and S[j]. Given the i.i.d probability
of 1/2 for each character to be S-type or L-type, the mean
number of L-type characters in between S[k] and S[j] is
governed by a geometry distribution with the mean of
1. Hence, the mean size of S[i..j] is 4. Because all the
LMS-substrings are located consecutively, the end of one
is also the head of another succeeding. This implies that
the mean size of a non-sentinel LMS-substring excluding
its end is 3, resulting in the reduction ratio not greater
than 1/3.

This theorem together with Fig. 2 imply that, if the
probabilities for a character in S to be S-type or L-
type are equal and the alphabet of S is constant, the
maximum space for our algorithm is contributed to level
1 where |S1| ≤ n/3. Hence, the maximum working space
is determined by the type arrays, which is n+O(1) bits
in the worst case. As we will see from the experiment
section, this theorem well approximates the results on
realistic data.

4 ALGORITHM II: RADIX SORTING FIXED-
LENGTH D-CRITICAL SUBSTRINGS

In this section, the second proposed algorithm called SA-
DS for linear time suffix array construction is presented.
We first introduce the concept of d-critical character,
which builds the basis of the SA-DS algorithm.

4.1 Critical Character
Definition 4.1: (Critical Character/Suffix) A character

S[i] is said to be d-critical, where d ≥ 2, if and only if (1)

TWO EFFICIENT ALGORITHMS FOR LINEAR TIME SUFFIX ARRAY CONSTRUCTION 8

S[i] is a LMS-character; or else (2) S[i− d] is a d-critical
character, S[i+1] is not a LMS-character and no character
in S[i−d+1..i−1] is d-critical. A suffix suf(S, i) is called
d-critical if S[i] is a d-critical character.

For notation convenience, let d1 = d+1 for the rest of
this section.

Definition 4.2: (Neighboring Critical Characters) A
pair of d-critical characters S[i] and S[j] are said to be
two neighboring d-critical characters in S, if there is no
other d-critical character in between them.

Definition 4.3: (Critical Substring) The substring
S[i..i + d1] is said to be the d-critical substring for
the d-critical character S[i] in S. For i ≥ n − d1,
S[i..i + d1] = S[i..n − 2]{S[n − 1]}d1−(n−2−i), where
{S[n− 1]}x denotes that S[n− 1] is repeated x times.

To simplify the discussion, we use ΨC−d(S) to denote
the d-critical substring array for S, which contains all
the d-critical substrings in S, one substring per item,
consecutively arranged according to their original po-
sitional order in S. From the above definitions, we have
the following immediate observations.

Proposition 4.4: In S, (1) every LMS character is a d-
critical character; and (2) the last character must be a
d-critical character, and the first character must not be a
d-critical character.

Proposition 4.5: Given S[i] is a d-critical character, both
S[i− 1] and S[i+ 1] are not d-critical characters.

Lemma 4.6: The distance between any two neighbor-
ing d-critical characters S[i] and S[j] in S must be in
[2, d1], i.e. j − i ∈ [2, d1], where d ≥ 2 and i < j.

Proof: From Proposition 4.5, given S[i] is a d-critical
character, S[i + 1] must not be a d-critical character. In
other words, the first d-critical character on the right
hand of S[i] may be any in S[i + 2, i + d1], but must
not be S[i+ 1].

4.2 Algorithm Framework
Our linear time suffix array sorting algorithm SA-DS is
outlined in Fig. 3. Lines 1-4 first produce the reduced
problem, which is then solved recursively by Lines 5-9,
and finally from the solution of the reduced problem,
Line 10 induces the final solution for the original prob-
lem. The time and space bottleneck of this algorithm
resides at reducing the problem in Lines 1-4. In the rest
of this section, we further describe in more details about
the operations in each step.

4.3 Reducing the Problem
With the concept of d-critical character/suffix, here
comes the key idea to reduce the problem into another
that is at least half smaller. First, we introduce an integer
array P1 to maintain the pointers for all the sampled d-
critical substrings for reducing the problem.

Definition 4.7: (Sample Pointer Array) The array P1

contains the sample pointers for all the d-critical sub-
strings in S preserving their original positional order,
i.e. S[P1[i]..P1[i] + d1] is a d-critical substring.

SA-DS(S, SA)

� S is the input string;
� SA is the output suffix array of S;
t: array [0..n− 1] of boolean;
P1, S1: array [0..n1] of integer; � n1 = ∥S1∥
B: array [0..∥Σ(S)∥ − 1] of integer;

1 Scan S once to classify all the characters as
L- or S-type into t;

2 Scan t once to find all the d-critical substrings
in S into P1;

3 Bucket sort all the d-critical substrings using P1 and B;
4 Name each d-critical substring in S by its bucket

index to get a new shortened string S1;
5 if ∥S1∥ = Number of Buckets
6 then
7 Directly compute SA1 from S1;
8 else
9 SA-DS(S1, SA1); � Fire a recursive call

10 Induce SA from SA1;
11 return

Fig. 3. The SA-DS algorithm framework.

From the definitions of P1 and ΨC−d, immediately we
have ΨC−d = {S[P1[i]..P1[i] + d1]|i ∈ [0, n1)}, where n1

denotes the size (or cardinality) of ΨC−d. Hereafter, we
simply consider P1 at pointer level, but the underneath
comparisons for its items lie in the substrings in ΨC−d.
Provided with the type array t (defined in Section 2), we
can traverse t once from left to right to compute P1 in
O(n) time.

Definition 4.8: (Siblings) P1[i] and S[P1[i]..P1[i]+d1] are
said as a pair of siblings.

Let ω(S, i) be the ω-weighting function of S[i], defined
as ω(S, i) = 2S[i]+ t[i] and let Sω denote the ω-weighted
string of S, where Sω[i] = ω(S, i). Now, bucket sort
all the items of P1 by their ω-weighted siblings (i.e.
Sω[P1[i]..P1[i] + d1] for P1[i]) in increasing order. Then
name each item of P1 by the index of its bucket to
produce a string S1, where all the buckets are indexed
from 0. Here, we have the following observations on S1.

Lemma 4.9: (Sentinel) The last character of S1 must be
the unique smallest character in S1.

Proof: From Proposition 4.4, we know that S[n − 1]
must be a d-critical character and the d-critical substring
starting at S[n − 1] must be the unique smallest among
all sampled by P1.

Lemma 4.10: (1/2 Reduction Ratio) ∥S1∥ is at most half
of ∥S∥, i.e. n1 ≤ ⌊n/2⌋.

Proof: From Proposition 4.4, S[0] must not be a d-
critical character. We know from Lemma 4.6 the distance
between any two neighboring d-critical characters is at
least 2, which immediately completes the proof.

The above two lemmas state that, S1 is at least half
smaller than S and terminated by an unique smallest
sentinel too.

Theorem 4.11: (Coverage) For any two characters
S1[i] = S1[j], there must be P1[i + 1] − P1[i] = P1[j +
1]− P1[j].

TWO EFFICIENT ALGORITHMS FOR LINEAR TIME SUFFIX ARRAY CONSTRUCTION 9

Proof: Given S1[i] = S1[j], from the definition of S1,
there must be (1) S[P1[i]..P1[i + 1]] = S[P1[j]..P1[j + 1]]
and (2) t[P1[i]..P1[i + 1]] = t[P1[j]..P1[j + 1]]. Given (1)
and (2) are satisfied, let i′ = P1[i] + 1 and j′ = P1[j] + 1.
We have the below observations:

• Any character in S[i′..i′ + d1] is a LMS character. In
this case, given S1[i] = S1[j], we must have P1[i +
1] = P1[j + 1].

• No character in S[i′..i′ + d1] is a LMS character. In
this case, both i′ + d and j′ + d must be in P1.

In either case, we have P1[i+1]−P1[i] = P1[j+1]−P1[j].

Theorem 4.12: (Order Preservation) The relative order
of any two suffixes suf(S1, i) and suf(S1, j) in S1 is the
same as that of suf(S, P1[i]) and suf(S, P1[j]) in S.

Proof: The proof is due to the following considera-
tions for the following two cases:

• Case 1: S1[i] ̸= S1[j]. In this case, it is trivial to see
that the statement is correct.

• Case 2: S1[i] = S1[j]. In this case, the order of
suf(S1, i) and suf(S1, j) is determined by the or-
der of suf(S1, i + 1) and suf(S1, j + 1). The same
argument can be recursively conducted on S1[i +
1] = S1[j + 1], S1[i + 2] = S1[j + 2],...S1[i + k −
1] = S1[j + k − 1] until a k is reached that makes
S1[i + k] ̸= S1[j + k]. Because that S1[i..i + k − 1] =
S1[j..j + k − 1], from Theorem 4.11, we must have
P1[i+k]−P1[i] = P1[j+k]−P1[j], i.e., the substrings
S[P1[i]..P1[i + k]] and S[P1[j]..P1[j + k]] are of the
same length. This suggests that sorting S1[i..i + k]
and S1[j..j+k] is equal to sorting S[P1[i]..P1[i+k]+
d1] and S[P1[j]..P1[j+k]+d1]. Hence, the statement
is correct in this case, too.

This theorem suggests that in order to find the orders
for all the d-critical suffixes in S, we can sort S1 instead.
Because the size of S1 is at most 1/2 of that of S, the
computation on S1 can be done within about one half
the complexity for S. In the following subsections, we
will show how to bucket sort and name the items of P1,
i.e. the two crucial subtasks of computing S1.

4.4 Sorting and Naming P1

To bucket sort and name all the items of P1, intuitively,
we need at least three integer arrays of at most 2n1 +
n integers in total: two arrays of size n1 used as the
alternating buffers for bucket sorting P1, and another of
size n for storing the bucket pointers, where 2n1 ≤ n. The
array of bucket pointers needs to be of size n because
each character of P1 is in the range [0, n− 1]. The space
needed for sorting P1 constitutes the space bottleneck for
our algorithm. To further improve the space efficiency,
we can use the following γ-weighting scheme for bucket
sorting P1 instead.

Definition 4.13: (γ-Weighted Substring) The γ-
weighted substring Sγ [i..j] in S is defined as
Sγ [i..j] = S[i..j − 1]Sω[j].

For any two γ-weighted substrings, we have the result
below.

Lemma 4.14: Given Sγ [i..i+k] < Sγ [j..j+k] and S[i..i+
k] = S[j..j+ k], we must have t(S, i+x) ≤ t(S, j+x) for
any x ∈ [0, k].

Proof: From the given condition, there must be
t(S, i+ k) < t(S, j+ k). If S[i+ k− 1] = S[i+ k], we must
have t(S, i + k − 1) = t(S, i + k) and t(S, j + k − 1) =
t(S, j + k), i.e. t(S, i + k − 1) < t(S, j + k − 1). If
S[i+ k− 1] ̸= S[i+ k], because S[i+ k− 1] = S[j+ k− 1],
we must have t(S, i + k − 1) = t(S, j + k − 1). Hence,
in both cases, t(S, i+ k − 1) ≤ t(S, j + k − 1). The proof
is completed by applying the analogous arguments to
t(S, i+ k − 2), t(S, i+ k − 3)..., and t(S, i).

By replacing Sω[i..j] with Sγ [i..j] as the weight of
P1[i] for bucket sorting P1 to produce S1, we have the
following result.

Theorem 4.15: (γ-Order Equivalence) (1) Given
Sγ [P1[i]..P1[i] + d1] = Sγ [P1[j]..P1[j] + d1], there must be
Sω[P1[i]..P1[i] + d1] = Sω[P1[j]..P1[j] + d1]; and (2) Given
Sγ [P1[i]..P1[i] + d1] < Sγ [P1[j]..P1[j] + d1], there must be
Sω[P1[i]..P1[i] + d1] < Sω[P1[j]..P1[j] + d1].

Proof: Let i′ = P1[i] and j′ = P1[j]. If Sγ [i
′..i′ + d1] =

Sγ [j
′..j′ + d1], we must have S[i′..i′ + d1] = S[j′..j′ + d1]

and t(S, i′ + d1) = t(S, j′ + d1), i.e., Sω[i
′..i′ + d1] =

Sω[j
′..j′ + d1]. Further, if Sω[i

′ + d1] = Sω[j
′ + d1] and

S[i′+d] = S[j′+d], we must have t(S, i′+d) = t(S, j′+d)
as well as Sω(i

′ + d) = Sω(j
′ + d), and so on for

the other characters in the two substrings. Therefore,
we must have Sω[i

′..i′ + d1] = Sω[j
′..j′ + d1]. When

Sγ [i
′..i′ + d1] < Sγ [j

′..j′ + d1], we consider these two
cases:

• If S[i′..i′ + d1] ̸= S[j′..j′ + d1], given Sγ [i
′..i′ +

d1] < Sγ [j
′..j′ + d1], there must be S[i′..i′ + d1] <

S[j′..j′ + d1] from the definition of γ-weighted sub-
string (Definition 4.13), which yields Sω[i

′..i′+d1] <
Sω[j

′..j′ + d1] from the definition of Sω.
• If S[i′..i′ + d1] = S[j′..j′ + d1], we must have

t(S, i′ + d1) = 0 and t(S, j′ + d1) = 1. Further, from
Lemma 4.14, we have t(S, i′+x) ≤ t(S, j′+x) for any
x ∈ [0, d1], resulting in Sω[i

′..i′+d1] < Sω[j
′..j′+d1].

Hence, we complete the proof.
Theorem 4.15 suggests that, to determine the order of

two ω-weighted d-critical substrings, we can use their γ-
weighted counterparts instead. As a result, we need to
compare the characters’ types only for the last characters
of two d-critical substrings. Therefore, sorting all the
items of P1 according to the last characters of their γ-
weighted siblings can be decomposed into two passes in
sequence: (1) bucket sort according to the types of these
characters; and (2) bucket sort according to the characters
themselves. Notice that the sorting of all the γ-weighted
substrings is not required to be stable, hence we can use a
fast method to sort the last characters of these substrings.
In step (1), there are only two buckets, one for the L-type
characters and another for the S-type characters. This
naturally suggests that step (1) can be done by traversing

TWO EFFICIENT ALGORITHMS FOR LINEAR TIME SUFFIX ARRAY CONSTRUCTION 10

all the characters only once to examine their L/S-types
and put them into their buckets accordingly.

To bucket sort the γ-weighted substrings, we only
need an array of Σ(S) or n1 integers to maintain the
bucket information at the 1st or 2nd iterations, respec-
tively. Now, provided with P1, t and S, we can compute
S1, i.e. the reduced problem, using the two-step algo-
rithm described below.

• Step 1: Bucket sort all the elements of P1 into
another array P ′

1 by their corresponding siblings
(i.e. fixed-size d-critical substrings) in S, with Σ(S)
buckets. The sorting is done through d + 2 passes,
in a manner of least-significant-character-first. This
step requires a time complexity of O(dn1) = O(n1),
for d = O(1).

• Step 2: Compute the names for all the elements
in P ′

1 (as well as P1). This job can be done by a
simple algorithm described as following: (i) allocate
an array tmp of size n, where each item is an integer
in [0, n−1]; (ii) initialize all the items of tmp to be −1;
(iii) scan P ′

1 once from left to right to compute all the
names for the items of P ′

1, by setting tmp[P ′
1[i]] with

the index of bucket that P ′
1[i] belonging to; (iv) pack

all the non-negative elements in tmp into the buffer
of P ′

1, by traversing tmp once. Now, the buffer of P ′
1

stores the string of S1.
One problem with Step 2 in the above algorithm is

that, in addition to P ′
1 and S1, it uses a large space of

n integers (each integer is of ⌈log n⌉ bits) for tmp. Al-
ternatively, we can use another space-efficient algorithm
for this job by reusing tmp for P ′

1 and S1, described
as following. Let us define a logical array tmpe =
{tmp[i]|i%2 = 0} for the first n1 even items of tmp, where
tmpe is said to be a logical array for its physical buffer
is distributed into the first n1 even items of tmp, i.e., its
physical buffer is not spatially continuous.

Suppose that P ′
1 is initially stored in the first n1 items

of tmp, we first copy P ′
1 into tmpe and set tmp[j] = −1

for any tmp[j] /∈ tmpe, i.e., distribute P ′
1 into the first

even items of tmp. Next, we scan tmpe from left to right
to compute the names for all the items of tmpe. For each
tmpe[i], we record its name as following: (1) if tmpe[i]
is even, set tmp[tmpe[i] − 1] with the name; or else set
tmp[tmpe[i]] with the name. Now, all the items of S1 are
stored in the non-negative odd items of tmp in their
correct relative positional orders. At last, we traverse
tmp once to compact all the non-negative odd items
into S1. Using this method for Step 2, tmp is reused for
accommodating both P ′

1 and S1, resulting in that only
one n-integer array is required for storing them.

4.5 Inducing SA from SA(S1)

Once again, let SA1 be the suffix array of S1. The
algorithm for inducing SA from SA1 in SA-DS is similar
to the algorithm A3.3 in Section 3.3, different only in the
1st step as shown below.

A4.5 Alg. for Inducing SA from SA1 in SA-DS

1) Initialize each item of SA as -1. Find the end of
each bucket in SA for all the suffixes in S. Scan
SA1 once from right to left, if suf(S, P1[SA1[i]])
is a LMS suffix then put P1[SA1[i]] to the current
end of the bucket for suf(S, P1[SA1[i]]) in SA and
forward the bucket’s end one item to the left.

2) The same as step 2 in the algorithm A3.3.
3) The same as step 3 in the algorithm A3.3.
Let us consider the correctness of the above algorithm.

Notice that a LMS-suffix is also a d-critical suffix, then all
the LMS-suffixes of S must be sampled in S1 and hence
ordered in SA1. Therefore, the 1st steps of algorithms
A.4.5 and A3.3 are equivalent in the sense that they will
fill the array SA with all the LMS-suffixes of S identi-
cally. That is, the resulting SA for these two steps are
the same. Because the last two steps in both algorithms
are exactly the same and the algorithm A3.3 can induced
sort SA from SA1, the algorithm A.4.5 must do the same
job too.

4.6 Example

To help readers grasp the core idea of the proposed
algorithm, we have dumped the intermediate status of
the data structures used in our SA-DS algorithm with
d = 2 when it runs on a string S = mmiissiippii$,
where $ is the sentinel.
Recursion level 0:

1
Index: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

S: m m i i s s i i s s i i p p i i $
t: 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1

P1: 2 4 6 8 10 12 14 16
Bucket sorting and naming P1:
Pass 1: 14 16 12 4 8 10 2 6
Pass 2: 14 16 12 4 8 10 2 6
Pass 3: 16 14 10 2 6 12 4 8
Pass 4: 16 14 10 2 6 12 4 8

S1: 3 5 3 5 2 4 1 0

Recursion level 1:
1

Index: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
S: 3 5 3 5 2 4 1 0
t: 1 0 1 0 1 0 0 1

P1: 2 4 7
Bucket sorting and naming P1:
Pass 1: 4 7 2
Pass 2: 7 4 2
Pass 3: 7 4 2
Pass 4: 7 4 2

S1: 2 1 0
SA1: 2 1 0

Recursion ends

Recursion level 1:
Inducing SA0 from SA1:

SA1: 2 1 0
Step 1: 7 -1 4 -1 2 -1 -1 -1
Step 2: 7 6 4 -1 2 5 3 1
Step 3: 7 6 4 2 0 5 3 1

Recursion level 0:
Inducing SA0 from SA1:

SA1: 7 6 4 2 0 5 3 1
Step 1: 16 -1 -1 -1 -1 -1 10 6 2 -1 -1 -1 -1 -1 -1 -1 -1
Step 2: 16 15 14 -1 -1 -1 10 6 2 1 0 13 12 9 5 8 4
Step 3: 16 15 14 10 6 2 11 7 3 1 0 13 12 9 5 8 4

In this example, our algorithm uses only two levels
of recursions i.e. the recursion depth is 2. For each
recursion, the algorithm starts from sampling all the d-
critical characters into P1, then proceeds to bucket sort
all the elements of P1 by their corresponding γ-weighted
siblings (2-critical substrings in S), which is done by
d + 2 = 4 passes of bucket sort. The result for each
pass is shown one after another in the figure, where the
sorting is not stable. Having sorted P1, the names for all

TWO EFFICIENT ALGORITHMS FOR LINEAR TIME SUFFIX ARRAY CONSTRUCTION 11

the items of P1 are computed, resulting in the reduced
string S1. Further, we recursively compute SA(S1) and
then induce SA(S) from it.

4.7 Practical Strategies
We propose several techniques to further improve the
time/space efficiencies of our SA-DS algorithm in prac-
tice. Without loss of generality, we assume a 32-bit
machine and each integer consumes 4 bytes.

General Strategy: Reusing the Buffer for SA(S)

From the algorithm framework in Fig.3, we see that the
algorithm consists of three steps in sequence: (1) sorting
P1; (2) naming all the items of P1 to obtain S1; and (3)
inducing SA(S) from SA(S1). Notice that SA(S) is an
array of n integers, and both P1 and S1 have n1 integers,
where 2n1 ≤ n, we can reuse the buffer for SA(S) for
the first two steps too.

Strategy 1: Storing the LS-Type Array
Each element of the LS-type array for S is one-bit and a
total of at most n(1 + 1/2 + 1/4 + ...+ log−1 n) < 2n bits
are required by the LS-type arrays for all the recursions.
Hence, we can use the two most-significant-bits (MSBs)
of SA(S)[i] for storing the L/S-type of S[i]. Recalling
that the space for each integer is allocated in units of
4-byte instead of bits, the two MSBs of an integer is
always available for us in this case. This is because
in computing SA(S), our algorithm running on a 32-
bit machine that requires at least 5n bytes, where 4n
for the items (each is a 4-byte integer) in SA(S) and
n for the input string (usually one byte per character).
Therefore, the maximum size nmax of the input string
must satisfy 5nmax < 232, resulting in nmax < 232/5
and log nmax < 30. In order words, 30 bits are enough
for each item of SA(S). However, for implementation
convenience, we can simply store the LS-type arrays
using bit arrays of maximum 2n bits in total, i.e. 0.25n
bytes.

Strategy 2: Bucket Sorting P1

Given the buffers for P1 and S1. To bucket sort P1, we can
use another array B in Fig. 3 for maintaining the buckets,
where the size of B is determined by the alphabet size
of the input string S. Even the original input string S
is of a constant alphabet. After the first iteration, we
will have S1 as the input string for the next iteration.
Since S1 has an integer alphabet that can be as large
as n1 in the worst case, B may require a maximum
space up to n1 ≤ ⌊n/2⌋ integers. To prevent B from
growing with n1, instead of sorting characters—each
character is of 4 bytes—in each pass of bucket sorting
the d-critical substrings, we simply sort each character
with two passes, i.e. the bucket sorting is performed on
units of 2-byte. The time complexity for bucket sorting

all the fixed size d-critical substrings at each iteration is
linearly proportional to the total number of characters
for these substrings. Since each d-critical substring is of
d+2 characters and the number of substrings decreases
at least half per iteration, the total number of charac-
ters sorted at all the iterations is upper bounded by
O((d+2)(1/2+1/4+...+log−1 n)) = O(dn), which is O(n)
given d = O(1). Hence, the time complexity for bucket
sorting in this way remains linear O(n). For n ≤ 232, the
entire bucket sorting process will be half slowed down.
However, the space for B can be fixed to 65536 integers,
i.e. O(1). When n > 232, despite the size of each integer
is increased, the same idea can also be applied. In respect
to whether the alphabet of S is constant or integer, the
peak space requirement for bucket sorting in the whole
algorithm will occur as below:

• For S originated from a constant alphabet, the peak
space occurs when further reducing S1 at the 2nd it-
eration, which requires an extra space of n1 integers,
where each integer is of ⌈log n1⌉ bits. In this case, we
can bucket sort on units of ⌈⌈log n1⌉/2⌉ bits.

• For S originated from an integer alphabet, the peak
space occurs when reducing S at the 1st iteration,
which requires an extra space of n integers, each
integer of ⌈log n⌉ bits. In this case, we can bucket
sort on units of ⌈⌈log n⌉/2⌉ bits.

In both cases, given n > 232, the required extra spaces
in the worst case are not more than 1/216 of the spaces
for their suffix arrays, respectively, and thus negligible.
Hence, in summary, bucket sorting for problem reduc-
tion at each iteration can always be done using an extra
working space of O(1) only, independent of n.

Strategy 3: Inducing the Final Result

In the inducing algorithm described above, a buffer B is
needed for dynamically recording the current head/end
of each bucket. However, in order to save more space,
we can use an alternative inducing algorithm which
requires only the buffer for SA(S1) and needs no B when
inducing SA(S1). This idea is to name the elements of
P1 in a different way: once all the items of P1 have been
sorted into their buckets, we can name each item of P1

by the end 1 of its bucket to produce S1. To be more
precise, this is because the MSB of each item in SA1 and
S1 is unused (when the strategy 1 is not applied). Given
that each item of S1 points to the end of its bucket in the
array of SA1, the inducing can be done in this way: when
an empty bucket in SA1 is inserted the first item S1[i] at
SA1[j], we set SA1[j] = i and mark the MSB of SA1[j]
by 1 to indicate that SA1[j] and S1[i] are borrowed for
maintaining the bucket end. At the end of each inducing
stage, we can restore the items in S1 and SA1 to their
correct values in this way: scan SA1 from left to right,
for each SA1[i] with its MSB as 1, let S1[SA[i]] = i and
reset the MSB of SA1[i] as 0.

1. We can also use the head of its bucket instead.

TWO EFFICIENT ALGORITHMS FOR LINEAR TIME SUFFIX ARRAY CONSTRUCTION 12

4.8 Complexity Analysis for SA-DS
Theorem 4.16: (Time/Space Complexities) Given S is

of a constant or integer alphabet, the time and space
complexities for the algorithm SA-DS in Fig. 3 to com-
pute SA(S) are O(n) and O(n log n) bits, respectively.

Proof: Because the problem is reduced at least 1/2 at
each recursion, we have the time complexity governed
by the equation below, where the reduced problem is of
size at most ⌊n/2⌋. The first O(n) in the equation counts
for reducing the problem and inducing the final solution
from the reduced problem.

T (n) = T (⌊n/2⌋) +O(n) = O(n)

The space complexity is obvious O(n log n) bits, for
the size of each array used at the first iteration is upper
bounded by n⌈log n⌉ bits, and decreases at least a half
for each iteration thereafter.

Corollary 4.17: (Working Space) The SA-DS algorithm
can construct the suffix array for a size-n string S with
a constant or integer alphabet using O(n) time and a
working space of only 0.25n + O(1) bytes, where the
characters of the integer alphabet are in [0..n− 1].

Proof: The key technique is to design the SA-DS
algorithm with the general strategy and the strategies
2-3 in Section 4.7. Naturally, we can allocate a LS-type
array at each iteration, which requires in total a space of
2n bits for the type arrays at all the iterations. However,
the 2n bits can be further reduced to n bits by trading
with time as following. At each iteration, before going
to the next iteration, we release the type array for the
current iteration; after returning from the next iteration,
we can scan the string (of the current iteration) once to
re-produce the type array for inducing the final result
for the current iteration.

Despite Σ(S) is constant or integer, after the first iter-
ation, the SA-DS algorithm will work on the shortened
strings of integer alphabets. In other words, for all the
iterations except the 1st iteration, the SA-DS algorithm
will consume the same space, no matter Σ(S) is constant
or integer. Hence, in respect to Σ(S), we consider the
following two cases at the first iteration.

• Constant alphabet. In this case, we can use an array
of size O(1) to maintain the bucket for inducing the
final result at the first iteration, i.e., the strategy 3
is not applied at the first iteration. As a result, the
least working space can be 0.125n+O(1) bytes.

• Integer alphabet. In this case, before the first itera-
tion, we bucket sort all the characters of S and re-
name each character of S to be the end of its bucket.
Under the assumption that Σ(S) is in [0..n − 1],
this can be done in O(n) time and using only the
space of SA(S) plus O(1). Then we execute the SA-
DS algorithm to compute SA(S) recursively. After
returning from the 2nd iteration, in addition to the
n-bit LS-type array, we allocate one more array of
n bits, one bit for use with each item of the array
SA(S). This n-bit array is used in combination with

the array SA(S) and S to apply the strategy 3.
Hence, the working space is 0.25n+O(1) bytes.

The peak space requirement of the whole algorithm
occurs when inducing the final result at the first iteration.
Hence, a working space of 0.25n+O(1) bytes is sufficient.

We have coded in C a sample implementation for
approaching the results stated in Corollary 4.17, i.e. the
DS2 algorithm in the experiment section.

5 EXPERIMENTS

The algorithms investigated in our experiments are KS,
KA and our algorithms IS, DS1 and DS2, where IS is the
SA-IS algorithm, DS1 and DS2 are two variants of the
SA-DS algorithm trading off differently between space
and time, with d = 3 and enhanced by the practical
strategies proposed in Section 4.7. The algorithms DS1
and DS2 use different settings of strategies: DS1 uses the
general strategy only, whereas DS2 uses the strategies 2
and 3 in addition to the general strategy. Specifically,
for d = 3, each substring sorted by the DS1 and DS2
algorithms has a fixed length of 5 characters, we sort the
substrings at the 1st iteration in 3 passes using a bucket
of 65536 integers (instead of sorting in 5 passes with a
bucket of 256 integers). The performance measurements
to be investigated are the time/space complexities, re-
cursion depth and mean reduction ratio.

TABLE 1
Data Used in the Experiments

Data Characters, ∥Σ∥, Description
bible.txt 4047392, 63 , King James Bible
chr22.dna 34553758, 4, Human chromosome 22
E.coli 4638690, 4, Escherichia coli genome
etext99 105277340, 146, Texts from Gutenberg project
howto 39422105, 197, Linux Howto files
pic 513216, 159, Black and white fax picture
sprot34.dat 109617186, 66, Swissprot V34 protein database
world192.txt 2473400, 94, CIA world fact book
alphabet 100000, 26, Repetitions of the alphabet [a-z]
random 100000, 64, Randomly selected from 64 characters

The datasets in Table 1 used in our experiment were
downloaded from the popular benchmark repositories
for SACAs, including the Canterbury [20] and Manzini-
Ferragina [6] corpora. These datasets are of constant
alphabets with sizes smaller than 256, and one byte is
consumed by each character. Among them, only the last
two files “alphabet” and “random” are artificial. The
experiments were performed on a machine with AMD
Athlon(tm) 64x2 Dual Core Processor 4200+ 2.20GHz
and 2.00GB RAM, and the operating system is Linux
(Sabayon Linux distribution).

All the algorithms were implemented in C++ and com-
piled by g++ with the option of -O3. The KS algorithm
was downloaded from Sanders’s website [21]. For the
KA algorithm, we use an improved version from Yuta

TWO EFFICIENT ALGORITHMS FOR LINEAR TIME SUFFIX ARRAY CONSTRUCTION 13

Mori 2 for the original KA code (at Ko’s website [22]).
Our algorithms IS, DS1 and DS2 were embodied in less
than 100, 150 and 250 effective lines of code, respectively,
all are available upon request.

Time and Space

The time for each algorithm is the mean of 3 runs,
and the space is the heap peak measured by using the
memusage command to start the running of each pro-
gram. The total time (in seconds) and space (in million
bytes, MBytes) for each algorithm are the sums of the
times and spaces consumed by running the algorithm for
all the input data, respectively. The mean time (measured
in seconds per MBytes) and space (in bytes per character
of the input string) for each algorithm are the total time
and space divided by the total number of characters.

Table 2 and 3 show the statistic time and space results
collected from the experiments, respectively, where the
best results are typeset in the bold fonts. For comparison
convenience, we also normalize all the results by the
best results. In the program for the KS algorithm, each
character of the input string S is stored as a 4-byte
integer, and the buffer for SA(S) is not reused for the
others 3. For a more accurate comparison, we subtract
7n bytes from the space results measured for the KS
algorithm in the experiments, since we are sure 7n space
can be trivially saved using some engineering tricks.

From these two tables, we see that all the best time
and space performances are achieved by our IS and DS2
algorithms, respectively. Specifically, in average, the IS
algorithm is 3 times (300%) faster than the KS, and 43%
faster than the KA. The mean space of 24.3n for the KS
algorithm in our experiments is about twice of the 10-
13n for another space efficient implementation of the KS
algorithm by Puglisi [5]. Even assuming the better 10-
13n space, the KS algorithm still uses a space more than
twice of that used by any of our algorithms. The KA
algorithm in our experiments is more time and space
efficient than the KS algorithm, this observation agrees
with the observations from the others [5], [17]; however,
which still uses over 67% more space than ours.

In the space table, we see that DS1 and DS2 use more
space than IS does for the small files “pic”, “alphabet”
and “random”. This is due to the bucket of 65536 inte-
gers used at the 1st iteration, i.e., 262144 bytes. The size
of this bucket is constant for any input string, and thus
can be counted as O(1). If this bucket is deducted from

2. The reason for us to use this improved version instead was that the
original KA code was observed to cause segment faults or simply go
dead when testing on files “howto” and “etext99”, and Mori’s version
is the only robust implementation of the KA algorithm that we could
obtain to complete our experiments. Please notice that according to
one external reviewer, for all inputs Mori’s implementation performed
better than other known versions of the KA algorithm.

3. Notice that there exists a prominent discrepancy for the KS
algorithm between its theoretical analysis and the results from its
implementation in the experiment. As for this discrepancy, we are
aware of this implementation might aim at achieving the best time
complexity by pushing the space complexity to its extreme.

the total space consumption, the space used by DS1 and
DS2 for these 3 files are around 5.2n bytes too, which is
well coincided with the analysis before.

Recursion Depth and Reduction Ratio
Table 4 shows the recursion depths and problem reduc-
tion ratios. These results are machine-independent and
deterministic for the given input strings. The recursion
depth is defined as the number of iterations, and the
mean reduction ratio is the sum of reduction ratios
for all iterations divided by the number of iterations.
Obviously, for the reduction ratio, the smaller, the faster
and better. For an overall comparison, we also give
the total for the recursion depth and reduction ratio
for each algorithm and the means for both, where the
former is the sum of all corresponding results and the
later is the former divided by the number of individual
input datasets, i.e. 10. Because the recursion depths and
reduction ratios for the algorithm DS1 and DS2 are
identical for each given input string, the results for these
two algorithms are listed in the two columns marked
with the title of DS. As observed from this table, our
IS algorithm achieves all the best results. The reduction
ratio of KS is more than double of that for the IS. This
well coincides with their time results in Table 2, where
the IS runs more than twice faster than the KS.

In this table, the reduction ratio for IS on “alphabet” is
0.2. This is explained as following. The dataset “alpha-
bet” consists of repetitions of [a-z]. In the 1st iteration,
it is reduced with a reduction ratio of 1/26 ≈ 0.04; in
the 2nd iteration, because all the non-sentinel characters
are identical, the reduction ratio can be regarded as 0.
Because the mean ratio is the average of the total ratio
over the iteration number, i.e., we have 0.04/2 = 0.2
in this case. Similarly, the reduction ratio for KA on
“alphabet” can be explained in the same way.

An interesting observation also from this table is that,
for the input file “random”, the DS algorithm has only
one recursion, which is one level less than the IS algo-
rithm. This well explains why the DS algorithm runs
faster than the IS algorithm for input file “random” in
Table 2, which is the only case in our experiments that
the best time was not archived by the latter. For the
random data, the DS algorithm turns out to converge
faster than the IS algorithm, and hence runs faster.

Discussion
Theorem 3.15 shows that if the S-type and L-type charac-
ters are randomly distributed in the string, the reduction
ratio will not be greater than 1/3. However, in practice,
the characters of a string usually exhibit certain statistical
correlations, which will likely render a smaller reduction
ratio, e.g. the mean of 0.29 for IS in Table 4. Because all
the strings in the experiments are of constant alphabets,
from Fig.2, the maximum space of our IS algorithm is
observed at level 1. Given the mean reduction ratio 0.29,
the space for SA is sufficient for accommodating S1, SA1

TWO EFFICIENT ALGORITHMS FOR LINEAR TIME SUFFIX ARRAY CONSTRUCTION 14

and B1 of IS. In this experiment, the implementation of
IS keeps the type array ti throughout the lifetime of Si

at level i, which could lead to a usage of up to 2n bits
in the worst case, i.e. 0.25 byte per character. Hence, we
see the mean space of 5.37 bytes per character for the
IS algorithm in Table 3. Such a space complexity is ap-
proaching the space extreme for suffix array construction
(i.e. 5 bytes per character in this case).

TABLE 2
Time

Data Time (Seconds)
IS DS1 DS2 KS KA

bible 2.7 3.11 3.9 8.9 3.62
chr22 24.7 31.5 39.6 92.8 34.1
E.coli 2.8 3.53 4.3 10 3.98
etext 101 123.2 150.4 428.1 149.67

howto 30.4 36.3 44.05 130.4 42.85
pic 0.06 0.09 0.13 0.56 0.29

sprot 94.6 111.59 139.6 356 132.91
world 1.3 1.61 2 4.8 1.84

alphabet 0.00 0.01 0.02 0.15 0.02
random 0.02 0.01 0.01 0.06 0.02

Total 257.58 310.95 384.01 1031.77 369.3
Mean 0.90 1.08 1.34 3.60 1.29
Norm. 1 1.21 1.49 4.01 1.43

TABLE 3
Space

Data Space (MBytes)
IS DS1 DS2 KS KA

bible 20.86 21.50 20.30 90.40 34.45
chr22 178.09 184.44 171.41 819.25 289.97
E.coli 24.29 25.15 23.23 105.93 40.01
etext 542.17 559.55 521.85 2369.92 907.34

howto 203.16 208.08 195.55 932.07 331.54
pic 2.57 2.76 2.79 15.51 3.11

sprot 554.58 560.44 543.26 2591.62 930.06
world 12.70 12.91 12.50 55.24 21.24

alphabet 0.49 0.74 0.75 3.03 0.52
random 0.61 0.74 0.74 2.26 0.88

Total 1539.52 1576.31 1492.37 6985.23 2559.12
Mean 5.37 5.50 5.20 24.36 8.92
Norm. 1.03 1.06 1 4.68 1.72

TABLE 4
Recursion Depth and Reduction Ratio

Data Depth Ratio
IS DS KS KA IS DS KS KA

bible 6 6 6 7 .34 .37 .67 .46
chr22 6 10 12 9 .31 .36 .67 .44
E.coli 7 8 7 9 .32 .36 .67 .45
etext 11 12 12 15 .33 .37 .67 .45

howto 9 10 11 13 .32 .36 .67 .45
pic 5 9 10 5 .26 .35 .67 .39

sprot 7 8 9 10 .31 .37 .67 .45
world 6 7 6 7 .32 .37 .67 .45

alphabet 2 10 11 2 .02 .34 .67 .02
random 2 1 2 2 .33 .36 .67 .47

Total 61 81 86 80 2.86 3.61 6.7 4.03
Mean 6.1 8.1 8.6 8.0 .29 .36 .67 .40
Norm. 1 1.33 1.41 1.31 1 1.26 2.34 1.38

6 CLOSING REMARKS

Our proposed algorithms have been adopted by the
other parties in their projects, e.g. [23], [24]. In particular,
Yuta Mori has optimized the coding of the SA-IS algo-
rithm, and conducted an extensive performance evalu-
ation study [25] for the SA-IS algorithm vs. the other

well-known linear and super-linear time SACAs, i.e. the
Difference-Cover [26], Deep-Shallow sorting [6], KA [1]
and Larsson-Sadakane [27] algorithms. The optimized
implementation of SA-IS was observed to be the most
time and space efficient from his experiment results.

ACKNOWLEDGMENT

We are grateful to the reviewers of DCC’09 and CPM’09
for the previous presentations of the two algorithms pro-
posed in this article, for their constructive and insightful
comments that have helped improve the presentation.
We would like to thank Pang Ko and Simon Puglisi for
the helpful discussions on their codes and works. We
also thank Yuta Mori for sharing his improved version
of the original KA code to complete our experiments.

APPENDIX

I: SAMPLE IMPLEMENTATION OF ALGORITHM
SA-IS
A sample natural implementation of our SA-IS algorithm
is embodied below in less than 100 lines of C code for
demonstration purpose, which is also the source code
used in our experiment.
unsigned char mask[]={0x80, 0x40, 0x20, 0x10, 0x08,

0x04, 0x02, 0x01};
#define tget(i) ((t[(i)/8]&mask[(i)%8]) ? 1 : 0)
#define tset(i, b) t[(i)/8]=(b)

?(mask[(i)%8]|t[(i)/8])
:((˜mask[(i)%8])&t[(i)/8])

#define chr(i) (cs==sizeof(int)
?((int*)s)[i]
:((unsigned char *)s)[i])

#define isLMS(i) (i>0 && tget(i) && !tget(i-1))

// find the start or end of each bucket
void getBuckets(unsigned char *s, int *bkt, int n,

int K, int cs, bool end) {
int i, sum=0;
// clear all buckets
for(i=0; i<=K; i++) bkt[i]=0;
// compute the size of each bucket
for(i=0; i<n; i++) bkt[chr(i)]++;
for(i=0; i<=K; i++)
{ sum+=bkt[i]; bkt[i]=end ? sum : sum-bkt[i]; }

}

// compute SAl
void induceSAl(unsigned char *t, int *SA,

unsigned char *s, int *bkt,
int n, int K, int cs, bool end) {

int i, j;
// find starts of buckets
getBuckets(s, bkt, n, K, cs, end);
for(i=0; i<n; i++) {

j=SA[i]-1;
if(j>=0 && !tget(j)) SA[bkt[chr(j)]++]=j;

}
}

// compute SAs
void induceSAs(unsigned char *t, int *SA,

unsigned char *s, int *bkt,
int n, int K, int cs, bool end) {

int i, j;
// find ends of buckets
getBuckets(s, bkt, n, K, cs, end);

TWO EFFICIENT ALGORITHMS FOR LINEAR TIME SUFFIX ARRAY CONSTRUCTION 15

for(i=n-1; i>=0; i--) {
j=SA[i]-1;
if(j>=0 && tget(j)) SA[--bkt[chr(j)]]=j;

}
}

// find the suffix array SA of s[0..n-1] in {1..K}ˆn
// require s[n-1]=0 (the sentinel!), n>=2
// use a working space (excluding s and SA) of
// at most 2.25n+O(1) for a constant alphabet
void SA_IS(unsigned char *s, int *SA, int n,

int K, int cs) {
// LS-type array in bits
unsigned char *t=(unsigned char *)malloc(n/8+1);
int i, j;

// classify the type of each character
// the sentinel must be in s1, important!!!
tset(n-2, 0); tset(n-1, 1);
for(i=n-3; i>=0; i--)

tset(i, (chr(i)<chr(i+1)
|| (chr(i)==chr(i+1)
&& tget(i+1)==1))?1:0);

// stage 1: reduce the problem by at least 1/2
// sort all the S-substrings
// bucket array
int *bkt = (int *)malloc(sizeof(int)*(K+1));
// find ends of buckets
getBuckets(s, bkt, n, K, cs, true);
for(i=0; i<n; i++) SA[i]=-1;
for(i=1; i<n; i++)

if(isLMS(i)) SA[--bkt[chr(i)]]=i;

induceSAl(t, SA, s, bkt, n, K, cs, false);
induceSAs(t, SA, s, bkt, n, K, cs, true);
free(bkt);

// compact all the sorted substrings into
// the first n1 items of SA
// 2*n1 must be not larger than n (proveable)
int n1=0;
for(i=0; i<n; i++)

if(isLMS(SA[i])) SA[n1++]=SA[i];

// find the lexicographic names of substrings
// init the name array buffer
for(i=n1; i<n; i++) SA[i]=-1;
int name=0, prev=-1;
for(i=0; i<n1; i++) {

int pos=SA[i]; bool diff=false;
for(int d=0; d<n; d++)
if(prev==-1 || chr(pos+d)!=chr(prev+d)

|| tget(pos+d)!=tget(prev+d))
{ diff=true; break; }
else if(d>0 && (isLMS(pos+d) ||

isLMS(prev+d)))
break;

if(diff) { name++; prev=pos; }
pos=(pos%2==0)?pos/2:(pos-1)/2;
SA[n1+pos]=name-1;

}
for(i=n-1, j=n-1; i>=n1; i--)

if(SA[i]>=0) SA[j--]=SA[i];

// stage 2: solve the reduced problem
// recurse if names are not yet unique
int *SA1=SA, *s1=SA+n-n1;
if(name<n1)

SA_IS((unsigned char*)s1, SA1, n1,
name-1, sizeof(int));

else // generate the suffix array of s1 directly
for(i=0; i<n1; i++) SA1[s1[i]] = i;

// stage 3: induce the result for
// the original problem

// bucket array
bkt = (int *)malloc(sizeof(int)*(K+1));
// put all the LMS characters into their buckets
// find ends of buckets
getBuckets(s, bkt, n, K, cs, true);
for(i=1, j=0; i<n; i++)
if(isLMS(i)) s1[j++]=i; // get p1

// get index in s
for(i=0; i<n1; i++) SA1[i]=s1[SA1[i]];
// init SA[n1..n-1]
for(i=n1; i<n; i++) SA[i]=-1;
for(i=n1-1; i>=0; i--) {

j=SA[i]; SA[i]=-1;
SA[--bkt[chr(j)]]=j;

}
induceSAl(t, SA, s, bkt, n, K, cs, false);
induceSAs(t, SA, s, bkt, n, K, cs, true);
free(bkt); free(t);

}

II: SAMPLE IMPLEMENTATION OF ALGORITHM
SA-DS
The below source code is to give a sample implementa-
tion in C for our SA-DS algorithm with d = 3, i.e. the
length of a d-critical substring is d + 2 = 5. Since both
the KS algorithm and ours sort fixed-size substrings,
for reader’s convenience of comparison, we intended to
code the program with a structure similar to that for
the KS algorithm [21] wherever applicable. This sample
implementation uses an extra working space of at most
2.25n + O(1) bytes, in addition to the input string and
the output suffix array.
unsigned char mask[]={0x80, 0x40, 0x20, 0x10, 0x08,

0x04, 0x02, 0x01};
// get type in bit
#define tget(i) ((t[(i)/8]&mask[(i)%8]) ? 1 : 0)
// set type in bit
#define tset(i, b) t[(i)/8]=(b)

?(mask[(i)%8]|t[(i)/8])
:((˜mask[(i)%8])&t[(i)/8])

// read 1-byte or 4-byte character
#define chr(i) (cs==sizeof(int)

?((int*)s)[i]
:((unsigned char *)s)[i])

// omega-weight
#define omegaWeight(x) ((int)(chr(x)*2+tget(x)))

// get into p1 the pointers for all the
// d-critical substrings in s[0..n-1]
int dCriticalChars(unsigned char *s,

unsigned char *t, int n, int *p1, int d) {
int i=-1, j=0;
while(i<n-1) {

int h, isLMS=0;
// the next d-critical character
// must be in s[i+2..i+d+1]
for(h=2; h<=d+1; h++)

if(tget(i+h-1)==0 && tget(i+h)==1)
{ isLMS=1; break; }

if(j==0 && !isLMS) { i+=d; continue; }
// move to the next d-critical character
i=(isLMS)?i+h:i+d;
// record pointer
if(p1!=0) p1[j]=i;
j++;

}
return j;

}
// sort src[0..n1-1] to dst[0..n1-1] according to
// the LS-types of characters in s,
// cs gives the character size, which is 1 for char

TWO EFFICIENT ALGORITHMS FOR LINEAR TIME SUFFIX ARRAY CONSTRUCTION 16

// and 4 for integer.
static void bucketSortLS(int *src, int *dst,

unsigned char *s, unsigned char *t,
nt n, int cs, int n1, int h) {

int i, j, c[]={0, n1-1};
for (i=0; i<n1; i++) {

j=src[i]+h;
if(j>n-1) j=n-1;
if(tget(j)) dst[c[1]--]=src[i]; // type-S
else dst[c[0]++]=src[i]; // type-L

}
}
// sort src[0..n1-1] to dst[0..n1-1] by d-critical
// substrings in s with characters in [0, K]
static void bucketSort(int *src, int *dst,

unsigned char *s, unsigned char *t,
int n, int cs, int n1, int K,
int *c, int d) {

int i, j, sum=0;
// init counters
for (i=0; i<(K+1); i++) c[i] = 0;
for (i=0; i<n1; i++) {

// s[n-1] is the unique smallest sentinel
if((j=src[i]+d)>n-1) j=n-1;
// increase counter
c[chr(j)]++;

}
for (i=0; i<(K+1); i++) {

// running length
int len=c[i]; c[i]=sum; sum+=len;

}
for (i=0; i<n1; i++) {

if((j=src[i]+d)>n-1) j=n-1;
// bucket sort
dst[c[chr(j)]++]=src[i];

}
}
// compute the start/end of each bucket
void getBuckets(unsigned char *s, int *bkt,

int n, int K, int cs, bool end) {
int i, sum=0;
// clear all buckets
for(i=0; i<=K; i++) bkt[i]=0;
// compute the size of each bucket
for(i=0; i<n; i++) bkt[chr(i)]++;
// compute start or end
for(i=0; i<=K; i++)
{ sum+=bkt[i]; bkt[i]=end ? sum : sum-bkt[i]; }

}

// compute the suffix array SA of
// s[0..n-1]={1..K}ˆn+0,
// require s[n-1]=0 (sentinel) and n>=2.
void SA_DS(unsigned char *s, int *SA, int n,

int K, int cs) {
// LS-type array in bits
unsigned char *t=(char *)malloc(n/8+1);
int i, j;

// stage 1: reduce the problem by at least 1/2
// classify the type of each character
// the sentinel must be in s1, important!!!
tset(n-2, 0); tset(n-1, 1);
for(i=n-3; i>=0; i--)

tset(i, (chr(i)<chr(i+1)
|| (chr(i)==chr(i+1)
&& tget(i+1)==1))?1:0);

// 2n1 must be <= n
int *SA1=SA, n1=dCriticalChars(s, t, n, SA1, 3),

*s1=SA+n-n1;
// bucket array for bucket sorting and
// final solution inducing
int *bkt = (int *)malloc(sizeof(int)*(K+1));
// bucket sort the gamma-weighted fixed-size
// 3-critical substrings
bucketSortLS(SA1, s1 , s, t, n, cs, n1, 4);

bucketSort(s1 , SA1, s, t, n, cs, n1, K, bkt, 4);
bucketSort(SA1, s1 , s, t, n, cs, n1, K, bkt, 3);
bucketSort(s1 , SA1, s, t, n, cs, n1, K, bkt, 2);
bucketSort(SA1, s1 , s, t, n, cs, n1, K, bkt, 1);
bucketSort(s1, SA1 , s, t, n, cs, n1, K, bkt, 0);
free(bkt);
// distribute s1 into the first n1
// even elements in SA
for(i=n1-1; i>=0; i--)
{ j=2*i; SA[j]=SA1[i]; SA[j+1]=-1; }
for(i=2*(n1-1)+3; i<n; i+=2) SA[i]=-1;
// name the sorted substrings
int name = 0, c[] = {-1, -1, -1, -1, -1};
for(i=0; i<n1; i++) {

int h, pos=SA[2*i], diff=0;
for(h=0; h<4; h++)

if(chr(pos+h)!=c[h]) {diff=true; break;}
if(omegaWeight(pos+4)!=c[4]) diff=true;
if(diff) {

name++;
for(h=0; h<4; h++)

c[h]=(pos+h<n)?chr(pos+h):-1;
c[h]=(pos+h<n)?omegaWeight(pos+h):-1;

}
if(pos%2==0) pos--; // even item
SA[pos]=name-1;

}
// pack s1
for(i=n/2*2-1, j=n-1; i>=0 && j>=0; i-=2)

if(SA[i]!=-1) SA[j--]=SA[i];

// stage 2: solve the reduced problem
if(name<n1) {
// recurse if each names is not yet unique
SA_DS((unsigned char*)s1, SA1,

n1, name-1, sizeof(int));
} else
// generate the suffix array of s1 directly
for(i=0; i<n1; i++) SA1[s1[i]] = i;

// stage 3: induce the final result
// get p1 into s1
dCriticalChars(s, t, n, s1, 3);
bkt = (int *)malloc(sizeof(int)*(K+1));
// put all the LMS characters into their buckets
// find ends of buckets
getBuckets(s, bkt, n, K, cs, true);
// get index in s1 which stores p1 now
for(i=0; i<n1; i++) SA1[i]=s1[SA1[i]];
// init SA[n1..n-1]
for(i=n1; i<n; i++) SA[i]=-1;
for(i=n1-1; i>=0; i--) {

j=SA[i]; SA[i]=-1;
if(j>0 && tget(j) && !tget(j-1))
SA[--bkt[chr(j)]]=j;

}
// compute SAl
// find starts of buckets
getBuckets(s, bkt, n, K, cs, false);
for(i=0; i<n; i++) {

j=SA[i]-1;
if(j>=0 && !tget(j)) SA[bkt[chr(j)]++]=j;

}
// compute SAs
// find ends of buckets
getBuckets(s, bkt, n, K, cs, true);
for(i=n-1; i>=0; i--) {

j=SA[i]-1;
if(j>=0 && tget(j)) SA[--bkt[chr(j)]]=j;

}

free(bkt); free(t);
}

TWO EFFICIENT ALGORITHMS FOR LINEAR TIME SUFFIX ARRAY CONSTRUCTION 17

REFERENCES
[1] P. Ko and S. Aluru, “Space-efficient linear time construction of

suffix arrays,” Journal of Discrete Algorithms, vol. 3, no. 2-4, pp.
143–156, 2005.

[2] J. Kärkkäinen, P. Sanders, and S. Burkhardt, “Linear work suffix
array construction,” JACM, no. 6, pp. 918–936, Nov. 2006.

[3] U. Manber and G. Myers, “Suffix arrays: A new method for on-
line string searches,” in Proceedings of SODA, 1990, pp. 319–327.

[4] ——, “Suffix arrays: A new method for on-line string searches,”
SIAM Journal on Computing, vol. 22, no. 5, pp. 935–948, 1993.

[5] S. J. Puglisi, W. F. Smyth, and A. H. Turpin, “A taxonomy of suffix
array construction algorithms,” ACM Comput. Surv., vol. 39, no. 2,
pp. 1–31, 2007.

[6] G. Manzini and P. Ferragina, “Engineering a lightweight suffix
array construction algorithm,” Algorithmica, vol. 40, no. 1, pp. 33–
50, Sep. 2004.

[7] R. Grossi and J. S. Vitter, “Compressed suffix arrays and suffix
trees with applications to text indexing and string matching,” in
Proceedings of STOC, 2000, pp. 397–406.

[8] W. K. Hon, K. Sadakane, and W. K. Sung, “Breaking a time-and-
space barrier for constructing full-text indices,” in Proceedings of
FOCS’03, 2003, pp. 251–260.

[9] T. W. Lam, K. Sadakane, W. K. Sung, and S. M. Yiu, “A space
and time efficent algorithm for constructing compressed suffix
arrays,” in Proceedings of International Conference on Computing and
Combinatorics, pages, 2002, pp. 401–410.

[10] S. Kurtz, “Reducing the space requirement of suffix trees,” Soft-
ware Practice and Experience, vol. 29, pp. 1149–1171, 1999.

[11] J. Kärkkäinen and P. Sanders, “Simple linear work suffix array
construction,” in Proceedings of ICALP, 2003, pp. 943–955.

[12] P. Ko and S. Aluru, “Space efficient linear time construction of
suffix arrays,” in Proceedings of CPM, 2003, pp. 200–210.

[13] D. K. Kim, J. S. Sim, H. Park, and K. Park, “Linear-time construc-
tion of suffix arrays,” in Proceedings of CPM, 2003, pp. 186–199.

[14] M. Farach, “Optimal suffix tree construction with large alpha-
bets,” in Proceedings of FOCS, 1997, p. 137.

[15] H. Itoh and H. Tanaka, “An efficient method for in memory
construction of suffix arrays,” in Proceedings of String Processing
and Information Retrieval Symposium, 1999.

[16] S. J. Puglisi, W. F. Smyth, and A. Turpin, “The performance
of linear time suffix sorting algorithms,” in Proceedings of Data
Compression Conference, Mar. 2005, pp. 358–367.

[17] S. Lee and K. Park, “Efficient implementations of suffix array
construction algorithms,” in Proceedings of the 15th Australasian
Workshop on Combinatorial Algorithms, 2004, pp. 64–72.

[18] G. Nong, S. Zhang, and W. H. Chan, “Linear suffix array con-
struction by almost pure induced-sorting,” in Proceedings of DCC,
U.S.A., Mar. 2009.

[19] ——, “Linear time suffix array construction using d-critical sub-
strings,” in Proceedings of CPM, France, Jun. 2009.

[20] T. Bell and etc., “The canterbury corpus,”
http://corpus.canterbury.ac.nz.

[21] P. Sanders, “A driver program for the KS algorithm,”
http://www.mpi-inf.mpg.de/ sanders/programs/suffix/, 2007.

[22] P. Ko, “Source codes for the KA algorithm,”
http://kopang.public.iastate.edu/homepage.php?page=source, 2007.

[23] Y. Mori, “libdivsufsort - a lightweight
suffix sorting library,” [Online] Available:
http://homepage3.nifty.com/wpage/software/libdivsufsort.html, 2007.

[24] H. Li, “bwa - burrows-wheeler alignment tool,,” [Online] Available:
http://maq.sourceforge.net/bwa-man.shtml, 2008.

[25] Y. Mori, “SAIS - an implementation of the induced sorting algo-
rithm,” [Online] Available: http://yuta.256.googlepages.com/sais, 2008.

[26] S. Burkhardt and J. Kärkkäinen, “Fast lightweight suffix array
construction and checking,” in Proceedings of CPM’03, LNCS 2676,
Jun. 2003, pp. 55–69.

[27] N. J. Larsson and K. Sadakane, “Faster suffix sorting,”
Department of Computer Science, Lund University, Swe-
den, Tech. Rep. LU-CS-TR:99-214, LUNDFD6/(NFCS-3140)/1–
20/(1999), May 1999.

Ge Nong obtained his B.E. and M.E. degrees,
both in Computer Engineering, from the NanJing
University of Aeronautics and Astronautics in
1992 and the South China University of Sci-
ence and Technology in 1995, respectively. He
received the Ph.D. in Computer Science from the
Hong Kong University of Science and Technol-
ogy in 1999. Then, he joined STMicroelectron-
ics as a researcher with R&D on IC and sys-
tem technologies for high-speed switches and
routers. He is now a Professor in the Depart-

ment of Computer Science of Sun Yat-sen University in Guangzhou,
China. His current research interests include algorithms, computer and
communication networks, switching theory and performance evaluation.

Sen Zhang received the B.S. degree in Com-
puter Science from TianJin University, TianJin,
China, the M.E. degree in Computer Engineer-
ing from South China University of Science and
Technology, Guangzhou, China, and the Ph.D.
degree in Computer Science from New Jersey
Institute of Technology, Newark, 1992, 1995 and
2004, respectively. He joined the Department of
Mathematics, Computer Science and Statistic,
State University of New York College at Oneonta
in 2004 as an Assistant Professor. His current re-

search interests include algorithms, data mining, database management
and bioinformatics.

Wai Hong Chan received the BSc, MPhil and
Ph.D. in Mathematical Science from the Hong
Kong Baptist University, Hong Kong Special Ad-
ministrative Region, China, in 1994, 1996 and
2003 respectively. He joined the Department of
Mathematics, Hong Kong Baptist University as
a Senior Lecturer in 2006. His current research
interests include algorithm design, quantum in-
formation, graph theory and combinatorics.

View publication stats

https://www.researchgate.net/publication/224176324

